Study of the Preparation of Bulk Powder Tungsten Carbides by Temperature Programmed Reaction with $CH_4 + H_2$ Mixtures

G. Leclercq,* M. Kamal,* J. M. Giraudon,* P. Devassine,* L. Feigenbaum,* L. Leclercq,* A. Frennet,† J. M. Bastin,† A. Lofberg,† S. Decker,† and M. Dufour†

**Laboratoire de Catalyse He´te´roge`ne et Homoge`ne, URA CNRS 402, Universite´ des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq Cedex, France; and* †*Catalyse He´te´roge`ne CP 243, Universite´ Libre de Bruxelles, 1050 Bruxelles, Belgium*

Received February 24, 1994; revised July 26, 1995; accepted August 25, 1995

W metal or of WO₃ with mixtures of CH₄ in hydrogen at surface carbon and amount of oxygen impurity. Two exper-
various pressures has been studied in temperature programmed imental approaches can be defined to solve t various pressures has been studied in temperature programmed
experiments. The resulting solids have been characterized by
elemental analysis, X-ray diffraction, XPS analysis, and specific
surface area measurements. The car distinct steps: W_2C is formed in the first step taking place
at about 650°C at atmospheric pressure with a 20% CH_{-H}, reasonable surface areas of a few square meters per gram. at about 650^oC at atmospheric pressure with a 20% CH_4-H_2 reasonable surface areas of a few square meters per gram.
mixture, while the formation of WC occurs only at higher (ii) Synthesis of bulk carbides with high spe mixture, while the formation of WC occurs only at higher **temperatures. During carburization some free carbon is depos-** areas and porous textures suitable for catalysis. These char**ited, the importance of which is very much dependent on CH₄** acteristics are often accompanied by lower purity of sampartial pressure and on the temperature of carburization. It ples, suited for studying the effects of **partial pressure and on the temperature of carburization. It** ples, suited for studying the effects of surface oxygen and has also been shown that direct carburization of WO₃ by excess carbon on the catalytic properties has also been shown that direct carburization of WO₃ by
CH₄-H₂ does not take place, but that the carburization occurs
via the reduction of WO₃ to W metal. The rate of reduction of
We have mainly focused our resear WO_3 and that of carburization of W metal are very much approach (11). The second approach has been extensively dependent on, respectively, hydrogen partial pressure and CH₄ used by Boudart and his group, who have achi **partial pressure. The extent of reduction of WO₃ into W metal** ingful results on catalysts with specific surface areas be-
required for carburization which takes place also depends on tween 50 and 200 m² g⁻¹ (12– required for carburization which takes place also depends on tween 50 and 200 m² g⁻¹ (12–14).
CH₄ partial pressure, indicating a competition between carburi-
Various methods of preparing transition metal carbides **CH₄** partial pressure, indicating a competition between carburization of W metal at the surface and diffusion of W metal into **the bulk of the solid.** \circ 1996 Academic Press, Inc. **investigate in detail the preparation steps of tungsten car-**

plication due to their unusual properties (1), in particular
in catalysis. Their effectiveness as catalysts was demon-
strated 20 years ago. For example, tungsten carbide was
shown to exhibit an interesting catalytic behav suitability of using highly dispersed tungsten carbides as of carburization.
inexpensive alternative catalysts to Pt or other noble metals in reactions such as hydrocarbon reforming (6–8) and hy-**EXPERIMENTAL** drogenation of alkenes (4), and in the electro-oxidation of *Tungsten Precursors* hydrogen or methanol in fuel cells (9, 10).

needed to identify the factors which are of importance in **The synthesis of bulk tungsten carbides by carburization of** controlling the surface composition and in particular the W metal or of WO₃ with mixtures of CH₄ in hydrogen at surface carbon and amount of oxygen impurity

are listed in Table 1. In this paper, we have chosen to bide from tungsten metal and tungsten trioxide, using CH₄ as carbiding agent in a mixture with hydrogen. $CH₄$ has **INTRODUCTION** been chosen as carbiding agent in order to reduce as much Transition metal carbides are expected to gain wide ap-
plication due to their unusual properties (1), in particular reactive of the alkanes and accordingly requires the high-

For a binary alloy such as WC, which is a rather complex The precursors containing tungsten used in this study heterogeneous catalyst, crucial synthesis experiments are were either WO_3 (Fluka, high purity grade 99.9%, BET

TABLE 1

General Methods of Synthesis of Transition Metal Carbides

^a Cp is cyclopentadienyl and dmad is dimethylacetylenedicarboxylate.

surface area about 3 m^2 g⁻¹, mixture of monoclinic and orthorombic crystallographic phases) or WO_3 prepared ted to a mixture N_2 (30%)–He, and the cell was warmed in our laboratory by ammonium metatungstate to room temperature. The amount of nitrogen desorbed $((NH_4)_6H_2W_{12}O_{40}, xH_2O,$ Fluka, high purity grade 97%) was measured with a thermoconductivity detector.

was determined by X-ray diffraction using either a Philips peak of contamination ($BE = 285$ eV) as a reference. (Norelco PW 1051) apparatus (Cu*K* α radiation $\lambda = 1.54178$ \overline{A} , Ni filter) or a diffractometer (Siemens D 5000) equipped
with a specially designed *in situ* X-ray diffraction cell. A
chosen gas mixture was passed through the platinum cell
with a specially designed in *situ* while the XRD patterns were collected using the diffractometer. These XRD patterns were assigned using the *Temperature programmed reduction*. The first setup JCPDS data base (Joint Committee on Powder Diffractional Called apparatus TPR hereafter) employed a TCD as detection St

formed at the "Service Central de Microanalyse" of the

Surface areas. Surface areas were measured with a
sorptometer (Quantasorb Jr.), using the single point BET
surface area determination. Samples (200 to 300 mg) were
Hewlett Packard HP 85 microcomputer. placed in a cell and heated with nitrogen to 150°C. After *Thermogravimetry* (*TPG*). The second setup em-

to -196° C in liquid nitrogen. The sample was then submit-

decomposition (24). *X-ray photoelectron spectroscopy.* XPS measurements Surface and Bulk Characterization **Surface and Bulk Characterization** were carried out with an AEI ES 200B (Bruker) spectrom-

eter equipped with an Al anode (*h*_n = 1486.6 eV, 300 W). *X-ray diffraction.* The bulk structure of the materials The binding energies (BE) were determined using the C 1*s*

Chemical analysis. Elemental analyses were per- contained initially 30% H_2 . First the sample (about 60 mg rmed at the "Service Central de Microanalyse" of the of WO₃) was dried in a flow of nitrogen at 500°C for a CNRS (Vernaison, France) by coulometry for C and O, hours and cooled to room temperature. Then nitrogen was and by plasma emission spectroscopy for W after fusion replaced by the reducing mixture (flow rate 2.6 liter h^{-1}). of the samples in NaOH + KNO₃. Water formed during reduction was trapped by a 13X
Surface grass press were measured with a molecular sieve at -196° C. The data from the thermocou-

outgassing, the cell was cooled to room temperature, then ployed an electronic microbalance (Sartorius GmbH) to

follow the weight loss when samples were heated $(60^{\circ}C$ working at atmospheric pressure with partial pressures of Torr = 133.3 N m⁻².)

made it possible for the temperature of the sample to be
measured. The size of the sample was usually around 3 g
of WO₃, but, in some cases, was up to 12 g. The gas flow
rate of the carburizing mixture was about 8–10 li The heating rate in the TP experiments was $50^{\circ}C$ h⁻¹. When The neating rate in the TP experiments was 50 C n⁻¹. When
reduction preceded carburization it was carried out at to 360° C h⁻¹).
 600° C for 10 h after heating from room temperature at a The gases used in this rate of 50 $^{\circ}$ C h⁻¹. Before each experiment the sample was rate of 50 C n \cdot . Before each experiment the sample was H₂ in argon "certified standard," 10.0% CH₄ in argon "cer-
pretreated in a nitrogen flow (about 10 liter h⁻¹) at 550°C tified standard" from UCAR, and 10.0% pretreated in a nitrogen flow (about 10 liter h⁻¹) at 550°C
and then cooled to room temperature. After carburization
the sample was cooled to room temperature in the CH₄-H₂
mixture (unless mentioned otherwise), swep mixture (unless mentioned otherwise), swept by a nitrogen
flow (10 liter h⁻¹) until no hydrogen was detected by chro-
matography, and finally passivated in an O₂-N₂ mixture
Low pressure reactor (*LPR*). The follow $(1.5\% \text{ O}_2)$ at a flow rate of 10 liter h⁻¹ for at least 10 h
in order to avoid bulk oxidation when the carbide was
contacted with air.

reactor was periodically measured by gas chromatography through krypton adsorption measurements and evaluation using a Shimadzu chromatograph GC9A equipped with using the BET and Kaganer (26) equations. It has been both TCD and flame ionization detectors (FID). Products shown (27) that, when applied in their respective approwere separated at 90° C in a column (3-m long and 1/8- priate coverage ranges, these two methods provide values inch wide) filled with "Carbosphere" molecular sieve. Peak in excellent agreement. areas were measured with an integrator (Spectra Physics (ii) Reduction or carburization reactions in temperature 4270). programmed conditions with total pressures lower than

Hydrogen (Air Liquide—U quality) was purified by 10 Torr.

 h^{-1}) in vacuum (10⁻⁶ Torr with an oil diffusion pump). (1 reactive gases ranging from 0.02 to 0.3 atm and argon as .) balance gas. The analysis of the gas composition at the outlet of the reactor was performed by a quadrupole mass *Preparation of Carbides by Temperature Programmed* spectrometer (QMG-420-5 from Balzers) equipped with (*TP*) *Experiments* a GEV-010 (Balzers) inlet device. Gas flow rates were Three different systems were used according to the total
pressure requirements, and will be referred to as APR1,
APP2 and LPP Two of them were operated at atmo-
ranged from 1.2 to 5 liter h^{-1} . A Eurotherm 818 controlle APR2, and LPR. Two of them were operated at atmo-
spheric pressure (APP1 and APP2) and the third at lower using chromel-alumel thermocouples was used for measur-

spheric pressure (APR1 and APR2) and the third at lower
pressures (LPR).
Atmospheric pressure reactor No. 1 (APR1). This reacting and controlling the reactor temperature.
Atmospheric pressure reactor No. 1 (APR1). Thi

The gases used in this apparatus were argon N 50, 10.0%

The composition of the gas mixture at the outlet of the (i) Determination of total surface areas, obtained

flowing through a Pd catalyst (Deoxo) and through a 13X
molecular sieve. Air (Air Liquide) was purified by a 13X
molecular sieve and nitrogen (Air Liquide—U quality)
was passed through copper heated at 300°C in order to
t *Atmospheric pressure reactor No. 2* (*APR2*)*.* This ap- different experiments. The pressure was measured during paratus, located in Brussels, was a classical flow reactor experiments by a membrane capacitance micromanometer

FIG. 1. TPR of WO₃ in 30% H_2 -Ar (300°C h⁻¹, 64 mg). TCD signal (in arbitrary units) versus temperature.

(Barocel from Datametric) within the range 10^{-4} to 10 it was submitted to a flow of a 20% CH₄–D₂ mixture at 5

trolled by two Phillips-Granville ''type C ultra-high vac- were recorded at various times of reaction. uum'' valves while the outlet flow rate was determined by fritted disks. The apparatus was equipped with two such fritted disks, each of them having different values of vol- **RESULTS AND DISCUSSION** ume flow rate (14 and 55 ml s⁻¹ for H₂). The advantage of working with these fritted disks is that in the whole **1. Reduction of Tungsten Trioxide** working pressure range (10⁻⁴ to 10 Torr) their volume *1.1. Reduction by Hydrogen at a Pressure of 0.3 atm* flow rate is only dependent on the nature of the flowing *1.1. Reduction by Hydrogen at a Pressure of 0.3 atm* the insertion of the most appropriate fritted disk for the ex-

45 from BOC, and D_2 N 28, O_2 N 50, and CH₄ N 55 of a metastable oxidic form of stoichiometry between WO₃ from UCAR. and WO₂. The hydrogen consumption for this shoulder is

of oxygen at 8 Torr from 25 to 1000°C. Then, after cooling, spond to the reduction of WO₃ into W₁₈O₄₉ or W₂₀O₅₈,

Torr, the UHV pressure when working with the ion pump or 0.5 Torr at a heating rate of 360°C h^{-1} from 25 to was measured with a VG Bayard-Alpert gauge. 1200°C, where it was left at 1200°C for 35 min. During this The introduction of gases into the apparatus was con- experiment the peaks at mass 2, 3, 12, 15 to 20, 28, and 44

molecules and is independent of the pressure (molecular In a first experiment, TPR (300 \degree C) of WO₃ (Fluka, 64 flow conditions). A LMD 100 manipulator (VG) allowed mg) was studied in apparatus TPR in a H₂ (30%)–Ar flow $(2.6$ liter h⁻¹) at atmospheric pressure. The variation of H₂ periment. consumption, as measured by the TCD signal, as a function During experiments conducted in flow conditions the of the temperature (Fig. 1) shows that the reduction of nature of the gaseous molecules could be determined using WO_3 into W takes place in at least three steps. The hydroa GD 150 mass spectrometer from Atlas Werk. gen consumption starts at about 480° C, then there is a The gases used were the following: H₂ N 55 and Kr N shoulder at about 640°C which may indicate the formation A sample of 74 mg WO_3 (Fluka) was calcined in a flow about 9.3% of the total consumption which would corre-

FIG. 2. Reduction of WO₃ in pure H₂ at atmospheric pressure. Area of H₂ chromatographic peak versus time. Heated at 50°C h⁻¹ up to 600°C, then at constant temperature. $m = 3.05$ g.

the formation of which has already been reported (28). A after drying at 550° C in a flow of nitrogen, was heated in have shown that it proceeds through intermediate oxidation states W^{5+} , W^{4+} , W^{2+} , and finally W^0 .

first maximum of hydrogen consumption is observed at a flow of hydrogen (9.6 liter h⁻¹) up to 600°C where it about 670 $^{\circ}$ C. The uptake made up of these two features stayed for 10 h. The composition of the gas flowing out of $(640 \text{ and } 670^{\circ}\text{C})$ is about one half of that of the second the reactor was determined by GC in order to follow the peak at 800°C. Hence the first peak probably corresponds variations of the hydrogen partial pressure (which is proto the formation of WO_2 . In the final step which starts at portional to the area of the hydrogen peaks in GC). Figure about 710° C and leads to the second peak, the maximum 2 shows the result. It is not possible to determine precisely reduction rate being at 800°C, WO₂ is reduced into W when hydrogen starts to be consumed, but certainly it is metal. These results are in good qualitative agreement with being consumed at 400°C. Hence, under 1 atm of hydrogen, those of Vermaire and van Berge (29) and of Grünert et the temperature where WO_3 reduction starts is noticeably *al.* (30) who, when studying the reduction of WO₃ by XPS, lowered compared to the previous experiment (480°C) have shown that it proceeds through intermediate oxida-with $P_{\text{H}_2} = 0.3$ atm.

. Knowing the pressure of hydrogen in the exit gas and its inlet flow rate we have calculated the amount of hydrogen 1.2. Reduction by Hydrogen at a Pressure of 1 atm
(Apparatus APR1) (Apparatus APR1) $(1.2 \times 1.2 \times 1.2)$ atm and the total amount of hydrogen consumed corresponds to about 3.2 mol H₂ per mol W which shows, consid-The above study has shown that, under our conditions ering the margin of error of the measurements, that WO_3 of TPR, WO_3 is completely reduced by hydrogen at 1 is completely reduced into W at 600° C by hydrogen at 1 However, at such a temperature W metal is likely to be atm. The steps of reduction of WO_3 cannot be clearly severely sintered. Consequently, we have checked whether distinguished in this experiment, but probably the maxi- $WO₃$ could be completely reduced in pure hydrogen at mum of hydrogen consumption at 600 $^{\circ}$ C (minimum in Fig. atmospheric pressure in the flow reactor used for carburiza- 2) corresponds to the maximum rate of reduction of WO_3 tion (APR1). A sample of WO₃ (Fluka, 1.32×10^{-2} mol), into WO₂. The first step corresponding to the formation

FIG. 3. Hydrogen consumption as a function of time during reduction of WO₃.

FIG. 4. Reduction of WO₃ in a mixture of 30% H_2 in Ar at atmospheric pressure heated at rate of 180°C h⁻¹. 74 mg.

TPR Results under Various H₂ Pressures

one. The reduction of WO_2 into W metal probably mainly since the experiment was stopped at 900° C. occurs during the almost constant H_2 consumption in the It is evident that lowering the hydrogen pressure results

TABLE 2 increase of P_{H_2} from 0.3 to 1 atm has evidently increased
the reduction rate.

1.3. Reduction by Hydrogen at a Pressure of 0.1 atm (*Apparatus APR2*)

 WO_3 (Fluka, 76 mg) was reduced in a flowing mixture of 10% H₂ in argon (P_{H_2} = 0.1 atm) with a heating rate of 360° C h⁻¹ from 600 to 900°C in apparatus APR2. The extent of reduction has been monitored using the height of the H_2O peak at mass 18 by mass spectroscopy. The results are given in Fig. 4 where we have plotted the hydrogen pressure and the temperature versus reduction time. * Not determined. The second starts only at around 600°C and clearly occurs in three steps. The position of the maxima are reported in Table 2. The third step starts at about 850° C but the posiof a suboxide cannot be distinguished from the second tion of the third peak maximum has not been determined

isothermal stage at 600°C. The heating rate was three times in a considerable decrease in the rate of reduction of WO₃ lower in this experiment than in the previous one. The into WO_{3-x} ($W_{18}O_{49}$ or $W_{20}O_{58}$), WO_2 , or W metal, and separation of the steps $WO_3 \rightarrow WO_2$ and $WO_2 \rightarrow W$ is consequently better separates the three steps of reduction. accordingly worse than that obtained with a lower H_2 pres-
This effect of the hydrogen pressure indicates clearly that sure. In Fig. 3 the constant H_2 consumption starts at a the rate limiting step of reduction is the surface reaction ratio $n_{\rm H_2}/n_{\rm W}$ of about 1.7, showing that, at 1 atm, the reduc- with hydrogen and not the diffusion rate of various species tion of $WO₂$ into W metal starts much before the total (probably W metal atoms) in the solid which should be reduction of WO_3 into WO_2 . Taken overall, however, an independent of hydrogen pressure. Consequently, the com-

FIG. 5. Domains of existence for W, W₂C, WC pure, and with free carbon.

FIG. 6. Changes of the areas of H2 and CH4 chromatographic peaks versus time during temperature programmed carburization of W metal $(50^{\circ}$ C h⁻¹, 2.60 g W, 20% CH₄-H₂).

$$
2W + CH_4 = W_2C + 2H_2
$$
 [1]

 $W_2C + CH_4 = 2WC + 2H_2$ [2]

$$
CH_4 = C + 2H_2
$$
 [3]

If *a* is the molar fraction of methane, then for each equilib- 2.2.1 Carburization with the mixture 20% CH_4-H_2 : rium the equilibrium constant is $K_i = (1 - a)^2/a$ if the total pressure is 1 atm. Using the thermodynamic data of hydrogen into W metal as described in the Experimental Barin and Knacke (31) we have calculated the values of *a* section was performed by temperature programmed reaccorresponding to each equilibrium at various temperatures (13) at atmospheric pressure in a flow (10.2 liter h^{-1}) and at 1 atm total atmospheric pressure. The results are of the mixture 20% CH_4-H_2 increasing the temperature reported in Fig. 5 where we can see the domains of exis- up to $800^{\circ}C(50^{\circ}C h^{-1})$ where the sample was kept for 10 h.

position of the solid is likely to be approximately uniform with carbon. Clearly, for the preparation of carbides free within the bulk of the solid whatever the extent of re- of carbon, it is better to use a carburizing mixture with a duction. low molar fraction of methane. On the other hand, for very low CH₄ contents, the domains of existence of tungsten **2. Carburization of Tungsten Metal** carbides are shifted toward higher temperatures and carbu-2.1. Thermodynamics of the System $CH_4/W/C$ rizing at too high a temperature could lead to solids with very low surface areas. Consequently we have decided to Three reactions are likely to occur during carburization start this study of the carburization of W using a mixture of W:
containing 2006 CH in hydrogen with the same composicontaining $20\% \text{ CH}_4$ in hydrogen with the same composition as the one often used by Boudart and co-workers $(12-14, 32)$.

2.2. Carburization of Reduced WO₃ at 1 atm (Apparatus APR1)

WCR1. The carburization of WO₃ (Fluka) reduced in tence for W, W₂C, WC free of carbon or contaminated This sample was passivated according to the procedure

FIG. 7. Fraction of CH₄ consumed (X/N_0) as a function of time during temperature programmed carburization of W metal in 20% CH₄–H₂.

reported in the Experimental section. This solid will be consumed at a given state of reaction to the initial one

arbitrary units) of CH₄ and of H₂, which are proportional fractions of hydrogen and of methane (here $a = 4$). to their partial pressures, are plotted versus time of reaction and temperature. At temperatures lower than 600^oC a slight decrease in the methane partial pressure associated with a corresponding increase in the hydrogen partial pressure is observed. Then the composition of the mixture
stabilizes at approximately 250°C. Methane consumption
starts at about 600°C and exhibits two peaks respectively
centered at 660 and 720°C. At 800°C the percentage of methane in the mixture reaches a value close to that ob-
served between 250 and 600°C but seemingly slightly time of carburization (Fig. 8). served between 250 and 600°C, but seemingly slightly time of carburization (Fig. 8).
In curve in Fig. 7 shows three regimes, the first starting lower.

called WCR1. (here corresponding to 20% CH₄), as a function of the In Fig. 6, the areas of the chromatographic peaks (in areas of CH_4 peaks and of *a*, the initial ratio of the molar

$$
\frac{X}{N_0} = \frac{(a+1)[S(CH_4)_0 - S(CH_4)]}{(a+1)[S(CH_4)_0] + S(CH_4)}
$$

When methane is consumed the hydrogen partial pres- at about 76° C, the second at 630° C (corresponding to the sure increases, first, because of the lowering of methane first peak in Fig. 6), and the third at 690° C. The two waves partial pressure and second, because of hydrogen produc- at 630 and 690°C correspond to real CH₄ consumption. tion during carbon consumption. To quantify the methane However, the first feature probably does not correspond consumption, it is necessary to establish the relationship to CH_4 consumption; it is very likely to be a simple artefact between the number of CH_4 molecules and the CH_4 pres- due to different changes of hydrogen and of methane flow sure (proportional to the CH₄ signal in chromatography). rates as a result of changes in the pressure drop due to In a very simple reasoning (see Appendix I) we have calcu- the presence of the catalyst when the temperature inlated the ratio X/N_0 of the molar flow rate of methane creases. This results in changes of the mixture composition

FIG. 8. Number of CH₄ moles consumed versus time during temperature programmed carburization of W metal in 20% CH₄–H₂.

and in a drift of the baseline. To support this view, let us of the exhausting of the W. For the first step, $N_1 = 7.1 \times$ mention that if this first regime is considered as resulting 10^{-3} mol C and $N_1/W = 0.5$, and for the second step, N_2 in good agreement with chemical analysis. Therefore, our of the simple hexagonal structure of WC. methodology enables us to calculate the number of CH₄ The W 4*f*, C 1*s*, and O 1*s* XPS spectra of the passivated moles used for the carburization of W and for carbon product are reported in Fig. 9. The W 4*f* signal exhibits

tinct steps, one starting at about 630° C and the other at istic of tungsten carbide (11, 32). The left side of the peak 690–700 °C. We have tried to estimate the number of moles indicates the presence of some oxide (W^{6+}) at about 38 of CH₄ (N_1 and N_2) used in each of these two steps, taking eV for W $4f_{5/2}$. into account the fact that at the minimum (at 690° C) be-
The decomposition of the photopeak C 1s using a tween the two peaks of the curve X/N_0 vs time (Fig. 7) FWHM of 1.7 eV typical of photopeaks of C 1*s* level (34) the second step of carburization has already started while shows the participation of three components. The first at the first is not yet finished due to its rate decreasing because lower binding energy (283.3 eV) is specific for carbon in

from CH₄ consumption the total amount of CH₄ used in 1.01×10^{-2} mol C and $N_2/W = 0.72$. Hence we can conclude this carburization would be 3.41×10^{-2} mol CH₄. Compari- that in the first step of carburization one obtains essentially son of this value to the amount of W in the sample leads W_2C , whereas WC is noticeably formed only at temperato a ratio CH₄/W of the number of molecules of CH₄ tures higher than 690°C. The C/W ratio of 1.2 indicates leading to C deposit to that of atoms of W of 2.2. Chemical that some carbon deposit at the carbide surface occurs analysis gives a ratio C/W in the final sample of 1.2. Hence during the carburization of W at 800° C. The surface area the integrated curve of Fig. 8 has been obtained by consid- of the final solid after passivation, measured by N_2 phyering that CH₄ consumption starts only at 630°C. In such sisorption, is 8.6 m² g⁻¹. The X-ray diffraction pattern of a case the final value of the ratio CH_4/W is 1.22, which is this carbide WCR1 exhibits the main lines characteristic

deposit resulting from CH₄ decomposition. the doublet W $4f_{7/2,5/2}$ at binding energies of 32.2 eV (\pm 0.2 Carburization has been shown to occur in two very dis- eV) for W $4f_{7/2}$ and at 34.2 (\pm 0.2 eV) for W $4f_{5/2}$ character-

FIG. 9. XPS analysis of WC (WCR1) prepared by temperature programmed carburization of W metal up to 800°C in 20% CH₄–H₂. (a) W 4*f* photopeak; (b) C 1*s* photopeak; (c) O 1*s* photopeak.

eV is assigned to polymeric or free carbon and is a result (34), and 286.7 (36)) have been reported in the literature partly of oil contamination in the spectrophotometer but for carbon atoms linked to oxygen atoms by single bonding mainly of carbon deposit arising from CH₄ decomposition. in poly-ether-ether-ketones. Hence this third type of car-The third component is at higher binding energy (286.6 bon can be attributed to surface carbon atoms bound to

a transition metal carbide (35). The highest peak at 285 eV). Binding energies near this value (285.9 (35), 286.4

higher than those measured by chemical analysis. This carbide WCR2, which is in good agreement with the previ-
shows that most of the "free" carbon and oxide phases ous result.
The Y rev diffraction pattern is ehereaterist

2.2.2. Carburization of reduced WO_3 *with the mixture*

oxygen of passivation. This last assignment is supported of W metal in a CH_4-H_2 mixture containing 10% of methby the shape of the O 1*s* signal which is very wide (half ane. The characteristics of this preparation are reported width about 4 eV) and is composed of at least two compo- in Table 4. This sample was cooled from 800 \degree C to room nents: there is one at 531.6 eV corresponding to transition temperature in pure hydrogen. It is named WCR2. The metal oxides (37), while the other, centered at about 533 variations of CH₄ partial pressure are reported in Fig. 10. eV, could be attributed to oxygen in water (533 eV (38)) CH₄ consumption starts at 685°C (a temperature that is or hydroxyl groups (532.6 eV (39)) or to oxygen singly higher than when 20% CH₄-H₂ was used), steeply i or hydroxyl groups (532.6 eV (39)) or to oxygen singly higher than when 20% CH₄–H₂ was used), steeply increases linked to carbon 533.8 eV (33) or 534.0 eV (34). and approximately stabilizes from 740 to 780°C, and linked to carbon 533.8 eV (33) or 534.0 eV (34). and approximately stabilizes from 740 to 780°C, and XPS results clearly show the formation of tungsten car-
slightly increases again up to 800°C where temperature XPS results clearly show the formation of tungsten car-
bide. However, after carburization at 800°C, the surface was kent constant. The integration of the curve X/N_0 versus bide. However, after carburization at 800°C, the surface was kept constant. The integration of the curve X/N_0 versus of WC is covered with polymeric carbon and part of the time of reaction leads to the curves in Fig. 11 of WC is covered with polymeric carbon and part of the time of reaction leads to the curves in Fig. 11 where the carbide surface has been oxidized during passivation. This ratio of CH/W of the number of moles of CH/consume carbide surface has been oxidized during passivation. This ratio of CH_4/W of the number of moles of CH_4 consumed excess carbon and oxygen will have to be removed before to that of W in the sample is plotted versus time excess carbon and oxygen will have to be removed before
catalytic reactions in order to characterize clean carbide
surfaces.
The composition of the surface layers analyzed by XPS
(about 5 nm in depth) is reported in Table and O/W ratios determined by XPS analysis are definitely Chemical analysis gives the formula $WC_{0.91}O_{0.15}$ for this higher than those measured by chemical analysis. This carbide WCP2 which is in good argement with the

The X-ray diffraction pattern is characteristic of WC. The specific surface area $(8 \text{ m}^2 \text{ g}^{-1})$ is on the same order *10% CH*4*–H*2*: WCR2.* The thermodynamics of the WC/ of magnitude as that of WCR1. The comparison of these $CH₄/C$ system predict an increase in the equilibrium tem-results with those of the previous carburization in the mixperatures for reactions [1–3] when the CH₄ percentage ture 20% CH₄–H₂ shows that, when the percentage of CH₄ decreases, at 1 atm total pressure (Fig. 5). This could result is only 10% , CH₄ consumption starts at higher temperature in a lowering of the amount of free carbon at the surface. (685°C instead of 630°C). Therefore a decrease in the CH₄ In order to check this, we have carried out carburization pressure results in a noticeable decrease in the carburiza-

	Temperature of	Composition	XPS Characterization				
Catalysts	carburization $(^\circ C)$	From elemental analysis	From XPS	W_c/W_t	C_c/C_t	Specific surface areas $(m^2 g^{-1})$	
WCR1	800	WC_1 ₂₂ O_0 ₀₂	$WC_{3.4}O_{0.23}$	0.86		8.6	
WCR ₂	800	$WC_{0.90}O_{0.15}$	WC _{1.44} O _{0.83}	0.64	0.55	8.0	
WC ₁	900	$WC_{0.90}O_{0.2}$	WC_1 ₂ $O_{0.80}$	0.69	0.62	10.2	
WC ₂	600	$WC_{0.43}O_{0.66}$	$WC_{1,1}O_{1,3}$	0.52	0.56	11.6	
WC3	630	$WC_{0.44}O_{0.74}$	$WC_{13}O_{15}$	0.50	0.56	21.0	
WC4	660	WC_0 52 O_0 50	$WC_{0.74}O_{1.0}$	0.68	0.65	not det.	
WCR3	700	$WC_{0.86}O_{0.34}$	$WC_{1,30}O_{1,13}$	0.57	0.50	5.2	
WC ₅	730	$WC_{0.90}O_{0.41}$	WC_2 ₇ $O_{0.6}$	0.62	0.36	6.9	
WCR4	900	$WC_{2,23}O_{0.01}$	$WC_{11}O_{0.3}$	0.87		11.4	
WC ₆	900	WC ₂₅₈ O _{0.01}	$WC_{12.5}O_{0.4}$	0.88		15.0	

Bulk and Surface (XPS) Compositions and Specific Surface Areas of Bulk Tungsten Carbides

tion rate. Here again, carburization seems to occur in two As a partial conclusion, the carburization of W metal matographic analyses seem to indicate that a duration of deposit at the carbide surface. 5 h in the isothermal stage at 800° C is not quite enough *2.3. Carburization of Reduced WO₃ at 5 Torr* (*Apparatus* used here.

LPR)
 LPR)

in its carbidic form (W 4*f_{7/2}* at a BE = 32.8 eV) associated $\frac{WO_3}{WO_3}$ (Fluka, 76 mg) was reduced under 100 Torr of with a minor oxidic form (W 4*f_x* at a BE = 38.1 eV) that hydrogen at 1000°C f arises probably from passivation. This oxidic form is in

carbide, excess free carbon is deposited at the surface but
at a much lower extent than when 20% CH_4-H_2 is used. indicates that each molecule of CH, which becomes adagainst 0.86 and 0.2 for WCR1). 685 to 750–815 °C.

steps which would correspond to the formation of W_2C with a mixture CH_4-H_2 is faster when the CH₄ pressure then of WC, but these two steps are not as well separated is increased and allows one to distinguish better between as with 20% CH_4-H_2 . Both chemical (Table 3) and chro- the two steps of carburization, but it increases the carbon

with a minor oxidic form (W $4f_{5/2}$ at a BE = 38.1 eV) that hydrogen at 1000°C for 1 h. The surface area of W metal *arises* probably from passivation. This oxidic form is in measured by the Kaganer method (26) is very g^{-1} . Then it was submitted to a flow of 6% CH₄-D₂ mixture, a slightly higher proportion than in the previous sample g^{-1} . Then it was submitted to a now of 0% CH₄-D₂ mixture,
carburized in 20% CH₄/H₂ which contained more free car-
had a total pressure of 5 Torr with a h above at its surface. The C 1s photopeak (Fig. 12b) indicates h^{-1} from 25 to 1000°C. Changes in the methane partial that carbidic carbon (BE = 283.3 eV) is more abundant pressure and the temperature versus time are rep

at a much lower extent than when 20% CH₄–H₂ is used. indicates that each molecule of CH₄ which becomes ad-
Moreover, this carbon deficit does not seem to manifest sorbed on W at 1000°C does not desorb but remains on sorbed on W at 1000°C does not desorb but remains on itself at the surface $(C_c/W_c = 1.2)$. As a consequence of the solid and is decomposed. It should be noted that a lower carbon deposit, oxygen enters to a higher extent tremendous decrease in CH₄ pressure from 76 Torr (0.1) during the passivation step and the tungsten carbide sur-
atm) to 0.25 Torr only results in a modest increase atm) to 0.25 Torr only results in a modest increase in the face is more oxidized (W_c/W_t = 0.64 and O/W = 0.83 temperature of the beginning of CH₄ consumption from

TABLE 4

Experimental Conditions of Preparation of Bulk Tungsten Carbides at Atmospheric Pressure

		Preparation			Posttreatment in H ₂			Passivation				
Catalyst	Precursor weight (g)	F^a (liter h^{-1})	T $(^{\circ}C)$	$G^{\mathfrak b}$ $({}^{\circ}C~h^{-1})$	Duration (h)	\boldsymbol{F} (liter h^{-1}) (°C)	\boldsymbol{T}	Duration (h)	Cooling to RT	F (liter h^{-1}) % O_2		Duration (h)
WCR1	WO ₃ 3.27	$TN^{c} = 9.95$ $TR^d = 8.0$ $TC^{e} = 10.2$	550 600 800	50 50 50	10 10 10		N _o		$CH_4 + H_2$	11.0	1.4	15
WCR2	WO ₃ 4.35	$TN = 3.6$ $TR = 3.6$ $TC = 3.1$	500 600 800	60 60 60	14 12 5		N _o		H ₂	3.5	2.0	15
WC1	Ammonium metatungstate 3.51	$TN = 10.0$ $TC = 10.4$	550 900	50 50	10 10	8.3	800	5	H ₂	10	$1.0\,$	15
WC ₂	WO ₃ 3.14	$TN = 9.7$ $TC = 10.0$	550 600	50 50	10 33		N _o		$CH_4 + H_2$	8.5	0.5	15
WC3	WO ₃ 3.11	$TN = 10.1$ $TC = 10.3$	550 630	50 50	10 28		No		$CH_4 + H_2$	10.3	0.6	15
WC4	WO ₃ 1.02	$TN = 6.0$ $TC = 6.1$	550 660	60 60	5 $\overline{4}$		No		H ₂	3.0	2.0	15
WCR3	WO ₃ 5.20	$TN = 2.5$ $TC = 2.7$ $TC = 3.4$	500 600 700	30 30 30	10 10 10		N _o		$CH_4 + H_2$	3.0	2.0	15
WC ₅	WO ₃ 3.37	$TN = 10.2$ $TC = 10.9$	550 730	50 50	10 10		No		$CH_4 + H_2$	8.9	1.3	15
WCR4	WO ₃ 3.53	$TN = 10.1$ $TC = 8.2$ $TC = 11.0$	550 600 900	50 50 50 ^f	10 11 15		No		$CH_4 + H_2$	10.1	1.6	15
WC ₆	WO ₃ 3.72	$TN = 10.4$ $TC = 10.0$	550 900	50 50 ^f	10 6		No		$CH_4 + H_2$	10.0	0.6	6

 a Flow rate (liter h^{-1}).

^{*b*} Gradient of temperature ($^{\circ}$ C h⁻¹).

^c Treatment in N₂.

^d Treatment of reduction.

^e Treatment of carburization.

 f 50 $^{\circ}$ C h⁻¹ from RT to 450 $^{\circ}$ C, then by steps of about 10 h every 30 $^{\circ}$ C.

WO₃. Here the precursor WO₃ (1.42 \times 10⁻² mol) was at 740°C, and it continues until 900°C. It is accompanied

The integration of the amount of CH₄ decomposed cor-
prepared by metatungstate decomposition. The maximum responds to a ratio C/W of 0.99. temperature of carburization was 900°C, a temperature at which the sample was left for 10 h.

3. Carburization of Unreduced WO₃ During this experiment the chromatographic analyses indicated, besides CH₄ and H₂ consumption, the formation 3.1. Carburization at 1 atm (20% CH_4 – H_2): *WC1* of H_2O , CO, and CO₂. The composition of the gas flowing at the outlet of the reactor is reported in Fig. 14.

at the outlet of the reactor is reported in Fig. 14.
The curve of H₂O formation is very much like that ob-
In their papers on tungsten carbide preparation, Boudart tained during TPR of WO₃ with the mixture 30% H₂-Ar, In their papers on tungsten carbide preparation, Boudart tained during TPR of WO₃ with the mixture 30% H₂–Ar, and co-workers (12–14) state that they have directly carbu-
but it is shifted toward lower temperatures as but it is shifted toward lower temperatures as expected rized WO_3 without previous reduction. Hence we have with a hydrogen pressure of 0.8 atm instead of 0.3 atm.
studied the carburization of samples of a few grams of Starting at 550°C. CO production occurs, it is maximum Starting at 550°C, CO production occurs, it is maximum

FIG. 10. Changes of the area of the CH₄ chromatographic peak versus time during temperature programmed carburization of W metal $(60^{\circ}C \cdot h^{-1})$ 4.35 g, 10% CH_4-H_2).

tungsten oxide reduction either directly in reactions such as X/N_0 (already defined), and Y/N_0 , Z/N_0 , $N_{\rm H_2O}/N_0$ using

$$
WO_3 + CH_4 = WO_2 + CO + 2H_2
$$
 [4]

$$
WO2 + 2CH4 = W + 2CO2 + 4H2
$$
 [5]

$$
WO2 + CH4 = W + CO2 + 2H2,
$$
 [6]

$$
CH_4 + H_2O = CO + 3H_2
$$
 [7]

$$
CH_4 + 2H_2O = CO_2 + 4H_2.
$$
 [8]

production. However, in each of the reactions [4] to [8], formed. the disappearance of one molecule of CH_4 is accompanied Coming back to Fig. 14, a decrease in CH_4 pressure is by the formation of three molecules (one of CO or $CO₂$ noticeable from 600°C, and the pressure then goes through

by CO_2 from 700°C. CO and CO_2 are produced during reported in Appendix II we have calculated the ratios the areas of the various product peaks. *X*, *Y*, and *Z* are the number of CH_4 moles consumed for carburization and carbon deposit (X) , and for CO and $CO₂$ formation (*Y* and *Z*) per unit of time, and $N_{\text{H}_2\text{O}}$ is the number of molecules of water formed per unit of time.

Then one can plot the curves of X/N_0 and $(Y + 2Z +$ or in methane reforming by H₂O produced in the reduction $N_{\text{H}_2\text{O}}/N_0$ as a function of time which represent, respec-
of WO₃ with H₂: tively, the relative amounts of carbon consumed (for carburization and carbon deposit) and of oxygen eliminated in $WO₃$ reduction. Their integrations lead to the curves in Figs. 15 and 16. The total amount of oxygen in H₂O, CO, and CO_2 formed (Fig. 16) corresponds to an O/W ratio of 3.14 which shows that all WO_3 has been reduced into W^0 Reactions [7] and [8] are catalyzed by transition metals in the reaction. The amount of oxygen consumed during $(40, 41)$ and they usually occur at temperatures between the first peak of reduction (max: 630° C) corresponds to a 600 and 800°C, as in this experiment. At this stage, we ratio O/W close to 1.4. Hence, at that temperature WO₃ cannot identify the principal steps leading to CO and $CO₂$ is reduced into $WO₂$ but also some W metal is already

and two of H_2) in the gas phase. By the simple calculation a mild minimum around 650°C, increases slightly before

FIG. 11. Ratio of the number of CH4 moles consumed to that of W metal versus time during the temperature programmed carburization of W metal in a 10% CH₄-H₂ mixture.

sponding to the first step of carburization of W metal into the hexagonal WC. W₂C (C/W = 0.5). Here, only around 50% of tungsten W 4*f*, C 1*s*, and O 1*s* XP spectra are very similar to would have led to W_2C . From Fig. 16, the amount of oxygen those obtained for WCR2 (Fig. 12). Table 3 shows that consumed up to 720°C, which corresponds to the end of the resulting solid is tungsten carbide and that the the first peak of carburization, is 2.8×10^{-2} mol O, an of free carbon is low (C/W = 1.2), but also that part of amount which allows the complete reduction of $WO₃$ into tungsten carbide was more oxidized during passivation $\rm{WO_2}$ (1.42 \times 10⁻² mol O) and of 48.5% of WO₂ into W (W_c/W_t = 0.69) than WCR1 which had not been treated metal. These figures seem to indicate that only W metal in a flow of pure hydrogen after carburization. can be carburized by CH4. The explanation for the second The temperature programmed carburization at 1 atm of

WCR1. This shows that at 900°C carbon deposit is more treatment. important than at 800°C. The various X-ray diffraction patterns are reported in

decreasing again at 720 \degree C, and goes through two minima After a treatment in flowing hydrogen for 5 h at 800 \degree C at 750 and 785°C. From Fig. 15, one can estimate the ratios and passivation, chemical analysis indicates a composition C/W corresponding to these three peaks (Table 5). corresponding to $WC_{0.9}O_{0.2}$ which shows that the hydrogen In this case the carbon consumption in the first step of treatment removes most of the free carbon. X-ray diffraccarburization ($600-720\textdegree$ C) is much lower than that corre- tion shows that the solid obtained in this preparation is

the resulting solid is tungsten carbide and that the amount

and the third peaks of CH₄ consumption is not easy. The WO_3 (Fluka) in a flow of 20% CH₄–H₂ was also studied second peak could correspond to the completion of W₂C *in situ* by X-ray diffraction. In the X-ray diffractometer, formation together with the beginning of WC formation the sample was submitted to drying $(RT$ to 550 $^{\circ}$ C) and and of free carbon deposit. The third peak could be due carburizing treatments similar to those of the previous to the end of WC formation accompanied by free car- sample WC1 up to 800° C where it was left for 5 h. An Xbon deposit. The exercise every the exercise every the exercise ray diffraction pattern was registered every 100°C up to The total amount of C consumed in this experiment 500° C, then every 50° C during the temperature program- $(C/W = 1.51)$ is higher than that in the preparation of ming, and after every hour during the isothermal

FIG. 12. XPS analysis of WC (WCR2) prepared by temperature programmed carburization of W metal up to 800°C in 10% CH₄–H₂. (a) W 4*f* photopeak; (b) C 1*s* photopeak; (c) O 1*s* photopeak.

Fig. 17. During the N_2 drying treatment no change occurs; could be hydrogen bronzes or/and tungsten suboxides. At only WO₃ is present. During the carburizing treatment, 550°C, W₂₀O₅₈ and bulk W₃O (or W₃C) can be identified. noticeable modifications begin to be observed at 500° C However, no WO₂ has been detected by XRD. At 600° C where a small amount of some new phases were formed the pattern is completely modified and indicates the preswhich were difficult to identify with certainty but which ence of a single phase which is either W_3O or W_3C (Fig.

FIG. 12—*Continued*

18). At 650°C a small proportion of carbide which could 600 and 810° C at 0.3 atm and between 830 and 1000°C at 0.1 is progressively formed at the expense of W_2C which disap-completely reduced into W metal. pears almost completely after 2 h of isothermal treatment In the experiment performed at 0.3 atm, CH₄ consump-
tion is important at temperatures between 760 and 840°C

correspond to $W_6C_{2,54}$ or to W_2C is formed. Then, at 700 atm. The total amount of oxygen consumed corresponds to and 750°C, only W₂C is observed and finally at 800°C WC a ratio O/W close to 3, indicating that WO₃ has been

tion is important at temperatures between 760 and 840 $^{\circ}$ C. This XRD study is in good agreement with the previous It starts very slightly at lower temperatures (about 600° C) experiments, since it indicates a progressive reduction of but carbon mass balance shows that CH_4 is mainly trans-
WO₃ starting at about 500°C. No W metal has been de-
formed into CO. The real CH₄ consumption for ca formed into CO. The real $CH₄$ consumption for carburizatected by X-ray diffraction, but the formation of W₂C when tion starts only at 760°C; that is at a much higher tempera-W₃O (or W₃C) disappears probably indicates that with a ture ($\Delta T = 160^{\circ}$ C) than during carburization at 1 atm. The $CH₄$ pressure of 0.2 atm, W metal is almost immediately difference is even much more important for the experiment transformed into W carbide. The progressive carburization at 0.1 atm since, there, CH₄ consumption begins at about of W, first into W₂C and then into WC, has been evi-
870°C is roughly constant up to 970–980°C sharply of W, first into W₂C and then into WC, has been evi- 870°C, is roughly constant up to 970–980°C, sharply indenced here.
creases at 980°C, and finally decreases and becomes negligi-3.2. Carburization at Low Pressures (Mixtures of 20% ble. The first consumption of CH₄ up to 980°C corresponds
CH₄-H₂ from 0.3 atm to 0.5 Torr) CH₄ peak is due to carburization which occurs when a *3.2.1. Carburization at mixture pressures of 0.3 atm and* large part of WO3 has been reduced into W metal. Hence, *0.1 atm* (*apparatus APR2*)*.* The carburizing mixture was at lower CH4 pressure the relative position of the peak of composed of 20% CH_4/H_2 (0.1 or 0.3 atm) diluted with carburization compared to that of the W formation is argon. shifted toward higher temperatures. Such a behavior can The variations of the composition of the products flowing easily be understood on the basis of two competitive pheout of the reactor were rather similar to those observed nomena occurring to W metal formed at the surface of the with sample WC1 (Fig. 14) during the carburization at solid. The first is its carburization and the second is the atmospheric pressure, but they are shifted toward higher diffusion of W atoms from the surface into the bulk of the temperatures (Table 6). Sample. The diffusion of W metal is unaffected by CH₄ A low production of CO has been observed between pressure and it was shown previously to be fast compared

FIG. 13. Temperature programmed carburization of W metal at 5 Torr. Change of CH₄ pressure versus time $(360^{\circ}C h^{-1}, 76 g WO_3, 20\% CH_4-D_2)$.

carburization of W metal is probably very much lowered by carburization starts to take place.

to the rate of reduction of W oxides by H_2 . In contrast, the kept at 1200°C for 15 min, and then it decreases while

a decrease of CH4 pressure. Hence, if the diffusion of W CH4 exchange is better followed by the height of the is much faster than its carburization one can understand peak at $m/z = 15$ (h_{15}) than by h_{16} , since water decomposition that carburization of W occurs only when a large part of tion participates at mass 16. One can tion participates at mass 16. One can observe (Fig. 20) W oxide has been reduced into W. that, up to about 1000° C, no methane exchange occurs, The stoichiometry of the final product carburized at 0.1 and then its importance continuously increases with tematm has been determined by temperature programmed perature. It is interesting to notice that the temperature oxidation from the amounts of CO and $CO₂$ produced where CH₄ exchange starts to take place is the same as during TPO. It corresponds to the formula $WC_{1,1}$ which is that where H_2 and HD appear in the gas phase (Fig. 21).
Therefore, probably CH, exchanges hydrogen atoms with very close to WC.
The total carbon consumption in the carburization at D_2 and not with D_2O . Peaks at $m/z = 17, 18, 19$, and 20 The total carbon consumption in the carburization at D_2 and not with D₂O. Peaks at $m/z = 17, 18, 19$, and 20
0.3 atm corresponds to a ratio C/W close to 1.44. This start to increase at the same temperature, about 650° 0.3 atm corresponds to a ratio C/W close to 1.44. This start to increase at the same temperature, about 650°C, indicates that the CH₄ pressure has a large importance for which corresponds to the beginning of the reducti indicates that the CH₄ pressure has a large importance for
the amount of free carbon at the surface of the catalyst
since the ratios C/W are 1.51, 1.44, and 1.1 for temperatures
of carburization, respectively, of 900, 8 *3.2.2. Carburization at a total pressure of 5 Torr* (*appara-* peaks at mass 20 and 17 to 19 indicates that exchange *tus LPR*). The reactions that can take place during this between D_2O and some hydrogen-containing species ocexperiment are numerous, thus there are the reduction of curs. However, since no CH_4 is exchanged before 1000 $^{\circ}$ C, WO₃ by D₂ and by CH₄ (which will form CO and CO₂), HDO is probably formed at lower temperatures by exthe exchange of CH₄ with D_2 or with D_2O formed by the change of D_2O with some hydroxyl groups at the surface reduction of WO₃, and the consumption of methane for of WO₃ or with some water molecules of crystallization of the carburization or for free carbon formation (decomposi- WO₃. Let us notice that, at 1000^oC, the height of peak tion of CH4). Information on this last reaction of methane 19 increases much more rapidly when the temperature consumption is given by the height of the peak at $m/z =$ increases than that of peak 20 (Fig. 22), probably in relation 12 (h_{12}) independently of the exchange of CH₄. It has been to CH₄ exchange which gives HDO. Moreover, the height observed (Fig. 19) that, within the margin of error, the of peak 17, which was very low, suddenly increases at that total methane pressure is constant until the solid has been temperature, very probably and in the main because of

FIG. 14. Changes of the area of CH₄, H₂O, CO, and CO₂ chromatographic peaks (normalized, taking into account the relative molar response of the TCD) during the temperature programmed carburization of WO₃ (50°C h⁻¹, 3.51 g ammonium metatungstate, 20% CH₄-H₂). \Box *S*(CH₄)/36; \blacklozenge *S*(CO)/42; \Diamond *S*(H₂O)/33; \triangle (*S*(CO₂)/48) \times 30.

the formation of CH3D. An argument for the assignment *3.2.3. Carburization at a total pressure of 0.5 Torr* (*appa-*

tion) and 22 (water production) indicates that carburiza- carbon deposit. tion occurs only when the reduction of $WO₃$ is complete (end of water formation). This is very well explained by a
very fast migration of W metal atoms into the bulk of the
sample and, since at such a low CH_4 pressure of 1 Torr
Carburization
Carburization the rate of carburization is certainly very low, carburization The maximum temperature of carburization was varied cannot occur before complete WO_3 reduction into W metal between 600 and 900°C. In each case, this temperature was which occurs after about 15 min at 1200 \degree C (Fig. 22). maintained constant for several hours. The experimental

of peak 17 mainly to CH_3D after 1000°C can be found *ratus LPR*). At such a low pressure, peaks 17 to 20, which when considering the ratio of the heights of peaks 17 and indicate the formation of water, hence the occurrence of 19 (Table 7) (these heights have to be corrected for the tungsten oxide reduction, start to increase at only about residuals). This ratio is roughly constant until 1000 $^{\circ}$ C and 800 $^{\circ}$ C, the temperature where CO starts to appear. Hence is approximately equal to 0.12 ± 0.02 which is characteristic at that pressure, water and carbon monoxide are simultaneof HDO fragmentation into HO^+ . Then it noticeably in- ously formed. No decrease in the height of peak 16 has creases with temperature because of CH_3D formation. In been observed. Moreover, no formation of H_2 or of HD contrast, the ratio $h_{18}/(h_{20} + h_{19})$ is roughly constant what-has been detected. Hence, no CH₄ exchange with D₂ takes ever the temperature, which indicates that h_{18} mainly, if place, indicating that no W metal is present at the surface not only, originates from D₂O and HDO fragmentation. of the solid. Consequently no carburization can occur. A CO and $CO₂$ were also observed at high temperature further analysis has confirmed these conclusions, since only (approximately from 830 to 860° C). an amount of carbon corresponding to 0.5% of the W atoms The comparison of the curves in Fig. 19 (CH₄ consump- present has been detected, which corresponds to surface

FIG. 15. Ratio of the number of CH₄ moles consumed to that of W versus time during the temperature programmed carburization of WO₃ in 20% CH₄-H₂.

of W_2C , W metal, and probably W oxycarbide as seen by is WC. X-ray diffraction. Its overall formula is $WC_{0.43}O_{0.66}$. Hence It is interesting to note that, according to the selected 600° C is too low a temperature to obtain pure tungsten temperature of carburization, it is possible to synthesize carbides. In contrast, a temperature of carburization of pure W_2C or WC. 630°C (WC3) or 660°C (WC4) leads to pure W₂C (checked Table 3 clearly shows that the higher the temperature by XRD). The amount of CH4 consumed during the prepa- of carburization the higher the proportion of free carbon ration of the sample WC3 corresponds to a ratio C/W of and the lower the proportion of W oxide after passivation. 0.52. Its overall composition after 1 year storage in air was $WC_{0.44}O_{1.1}$, which shows that it has been heavily oxidized. **CONCLUSION** For these three compounds, XPS analysis (Table 3) indicates the presence of W carbide and oxide together with This study of the carburization of W metal and of WO_3 carbidic carbon and carbon of pollution. The proportions by CH_4-H_2 mixtures has clearly shown that it occurs in of carbidic C ($C_c/C_t = 0.56$ and 0.65) and of W oxides two distinct steps. W₂C is formed in the first step at about (W_o/W_t = 0.32 and 0.5) are high, indicating that, at these 650–700°C in a CH₄ pressure of 0.2 atm, while WC is low temperatures, the amount of free carbon is low, and formed in the second step. Hence it is possible to synthesize consequently it cannot play its protecting role during the either W_2C or WC by adjusting the conditions of carburizapassivation step, leading to significant surface oxidation tion (mainly the temperature). It has also been shown of W_2C . that the rate of reduction of WO_3 together with that of

conditions of preparation of the various samples are sum-
Carburization at 700 or 730 \degree C (samples WCR3 and marized in Table 4 and their compositions (elemental anal- WC5) leads to mixtures of W_2C and WC (XRD and eleysis and XPS) together with their physical and chemical mental analysis, Table 3) with a large predominance of the characterizations are in Table 3. WC phase. After carburization at higher temperatures (800 At 600° C (sample WC2), the solid obtained is a mixture to 900° C) the only phase detected by X-ray diffraction

FIG. 16. Number of H₂O, CO, and CO₂ moles formed during temperature programmed carburization of WO₃ in 20% CH₄–H₂. \Box *N*(CO); \Box *N*(H₂O); ◆ *N*(O total); ▲ *N*(CO₂) × 30.

carburization of *W* are very much dependent on the total to the conclusion that tungsten oxides cannot be directly pressure (hence on the pressure of H_2 for the first reaction carburized under the conditions studied here, but only W and on that of CH4 for the second reaction), since the metal can be carburized. When W metal is formed at the temperature of the beginning of reduction by hydrogen surface of the incompletely reduced oxide, the phenomena shifts from about 300–400 to 700°C when hydrogen pres- observed are very different when the methane pressure is sure is decreased from 1 atm to 1 Torr and the carburization decreased, because of the competition between the diffuof W metal starts at about 630 and 685°C when the percent-
sion of W metal from the surface into the bulk of the age of CH₄ is equal to, respectively, 20 and 10% in CH₄–H₂ sample and its carburization at the surface. At high methmixtures at atmospheric pressure.

ane pressure (0.2 atm), W metal is carburized almost as The direct carburization of WO_3 by CH_4-H_2 has led soon as it is formed, as evidenced by *in situ* X-ray diffraction experiments during the temperature programmed **TABLE 5** carburization and by the amounts of oxygen (from the oxide) and of methane consumed as a function of the **Ratio C/W in Sample WC1 and Ratio O/W (O consumed** temperature. However, when the methane pressure is **per W during reduction) as a Function of the Temperature of** lower (0.02 atm or 1 Torr), the rate of W carburization
Reaction is strongly decreased while that of W diffusion is not is strongly decreased while that of W diffusion is not changed. Hence most of the W migrates into the solid before being carburized, and carburization occurs only at higher extents of reduction of W oxides into W metal. This results in a large shift of the temperature of the beginning of carburization. However, at such low methane pressures the consumption of $CH₄$ is very steep, indicating 164 LECLERCQ ET AL.

FIG. 17. X-ray diffraction patterns at different temperatures during *in situ* temperature programmed carburization of WO₃ (60°C h⁻¹, 20%) CH_4-H_2).

FIG. 18. X-ray diffraction pattern of WO₃ treated at 600°C in a mixture 20% CH₄-H₂. \blacktriangle W₃O; \blacklozenge W₃C.

TABLE 6

			Reduction temperature $(^{\circ}C)$	Carburization temperature $(^{\circ}C)$		
$P_{\text{CH}_{4}} + P_{\text{H}_{2}}$ (atm)	Diluent	Beginning	First max.	Second max.	Beginning	Max.
	None	300	630	750	600	650-720
0.3	Ar	500	640	780	760	810
0.1	Ar	540	800	\sim 1000	870	980
6.6×10^{-3}	None	650		1000	1200	

Results of the Temperature Programmed Carburization of Unreduced WO₃ at Various Pressures of 20% CH₄-H₂

extended reduction of $WO₃$, some W metal becomes

For all the carbides obtained by carburization with a ture per second,
H₄-H₂ mixture it has been shown that some free carbon is X the number of moles CH₄ transformed per second, and CH_4-H_2 mixture it has been shown that some free carbon is A the number of moles CH_4 transformed per second, and deposited at their surface and that some surface oxidation a the initial ratio of the molar fractions o deposited at their surface and that some surface oxidation occurs during the passivation and the storage of the solids. However, their composition strongly depends on the tem-
negative of moles of CH₄ and H₂ flowing out of the
negative of cerburization and on the CH₂ pressure since
negative are perature of carburization and on the $CH₄$ pressure, since the proportion of free carbon at the surface increases with methane pressure at a given temperature and with the t emperature of carburization at a given CH₄ pressure. Only a small amount of carbon of pollution is observed after carburization at 650° C, but only free carbon can be observed by XPS after carburization at 900°C. However, the presence of free carbon can be advantageous, since the One can calculate the partial pressure of CH₄ more free carbon at the surface the less the extent of oxidation of the W carbide surface, which shows that carbon of pollution protects W carbides from oxidation. Nevertheless, the presence of the oxide phases and of free $\frac{1}{2}$ carbon at the surface of carbides is obviously detrimental for their use in catalysis. Consequently some pretreatments for cleaning their surfaces will be necessary before catalytic experiments. These pretreatments will be described in a and the ratio *X*/*N* is further paper.

APPENDIX I *X*

Calculation of the Ratio X/N_0 Fraction of CH₄ **Consumed Per Unit of Time during the Carburization of W Metal**

$$
2W + CH4 = W2C + 2H2
$$

\n
$$
W + CH4 = WC + 2H2
$$

\n
$$
W2C + CH4 = 2WC + 2H2
$$

\n
$$
CH4 = C + 2H2
$$

that carburization is very fast as soon as, due to the When 1 mol CH₄ disappears, 2 mol H₂ are formed.

available at the surface of the solid.

For all the carbides obtained by carburization with a ture per second.

$$
N_{\text{CH}_4} = N_0 - X
$$
 and $N_{\text{H}_2} = aN_0 + 2X$.

$$
P_{\text{CH}_4} = \frac{P_{\text{T}}(N_0 - X)}{(a+1)N_0 + X} = \frac{(a+1)(P_{\text{CH}_4})_0(N_0 - X)}{(a+1)N_0 + X},
$$

$$
\frac{X}{N_0} = \frac{5[(P_{\text{CH}_4})_0 - P_{\text{CH}_4}]}{5(P_{\text{CH}_4})_0 - P_{\text{CH}_4}}
$$

.

.

Or, since P_{CH_4} is proportional to the area of the chromato-The reactions that take place are graphic peak corresponding to CH₄,

$$
\frac{X}{N_0} = \frac{(a+1)[(S_{\text{CH}_4})_0 - S_{\text{CH}_4}]}{(a+1)(S_{\text{CH}_4})_0 + S_{\text{CH}_4}}
$$

FIG. 19. Temperature programmed carburization of WO₃ in a mixture of 20% CH_4-D_2 at 5 Torr (360°C h⁻¹, 74 mg). Height of peak at mass 12 versus time.

FIG. 20. Temperature programmed carburization of WO₃ in a mixture of 20% CH_4-D_2 at 5 Torr (360°C h⁻¹, 74 mg). Heights of peaks at mass 15 and 16 versus time.

FIG. 21. Temperature programmed carburization of WO₃ in a mixture of 20% CH_4-D_2 at 5 Torr (360°C h⁻¹, 74 mg). Heights of peaks at mass 2 and 3 versus time.

FIG. 22. Temperature programmed carburization of WO₃ in a mixture of 20% CH_4-D_2 at 5 Torr (360°C h⁻¹, 74 mg). Heights of peaks at mass 19 and 20 versus time.

Carburization of WO₃ with 20% CH₄–D₂ at a Pressure of 5 Torr Mass Spectrometry Analysis

Temperature $(^{\circ}C)$	h_{20} corr. (V)	h_{19} corr. $(\rm V)$	h_{18} corr. (V)	h_{17} corr. (V)	h_{17} corr. h_{19} corr.	h_{17} corr. h_{19} corr. + h_{20} corr.
652	0.0013	0.0036	0.0024	0.0009	0.25	0.49
718	0.0046	0.0081	0.0057	0.0012	0.15	0.45
798	0.0175	0.0195	0.0129	0.0027	0.14	0.35
829	0.0405	0.0317	0.0216	0.0035	0.11	0.30
860	0.0740	0.0442	0.0316	0.0055	0.12	0.27
884	0.1090	0.0547	0.0421	0.0060	0.11	0.26
907	0.1540	0.0652	0.0549	0.0075	0.12	0.25
938	0.2920	0.0867	0.0916	0.0110	0.13	0.24
975	0.4350	0.1032	0.1416	0.0150	0.14	0.26
1002	0.6500	0.1212	0.1816	0.0225	0.19	0.24
1049	0.7650	0.1242	0.2106	0.0375	0.30	0.24
1106	0.9500	0.1432	0.2776	0.1225	0.85	0.25
1129	0.9940	0.1582	0.3076	0.1465	0.93	0.27
1152	1.0450	0.1832	0.3406	0.1715	0.94	0.28
1187	1.145	0.2632	0.4376	0.1965	0.75	0.31
1200	1.195	0.3032	0.4576	0.1965	0.65	0.30
1200	1,0150	0.2982	0.4276	0.1815	0.61	0.32
1200	0.1450	0.0432	0.0626	0.0315	0.73	0.33
1200	0.0205	0.0102	0.0156	0.0255	2.5	0.51

Calculation of the Ratios X/N_0 , Y/N_0 , Z/N_0 , and
 $N_{\text{H}_0}N_0$ (*X*, *Y*, *Z*, $N_{\text{H}_0} =$ **Number of Moles CH₄** The various partial pressures are **Consumed Per Second for Carburization (***X***), for CO Formation** (*Y*), for CO₂ Formation (*Z*), and Number of Moles H₂O Formed Per Second) during the Carburization of WO₃

The reactions taking place are

$$
H_2 + "O" = H_2O \t and \t WO_3 + CH_4 = WO_2 + CO + 2H_2
$$

\n
$$
WO_2 + 2CH_4 = W + 2CO + 2H_2
$$

\n
$$
WO_2 + CH_4 = W + CO_2 + 2H_2
$$

\n
$$
CH_4 + H_2O = CO + 3H_2
$$

\n
$$
CH_4 + 2H_2O = CO_2 + 4H_2
$$

\n
$$
P_T = (a + 1)(P_{CH_4})_0.
$$

and the reactions of carburization (see Appendix I) and/ One can easily calculate or any combination of these equations.

One can see that when 1 mol of CO or $CO₂$ is formed there is an increase of 2 mol in the gas phase; when 1 mol *X* (*a* 1) of CH₄ is consumed for carburization or carbon deposition, there is an increase of 1 mol in the gas phase, and the disappearance of 1 mol of H₂ does not change the number α 6 mol in the gas phase.

APPENDIX II Hence, $\sum N = (a + 1)N_0 + X + 2Y + 2Z$ using the

$$
P_{\text{CH}_4} = \frac{P_{\text{T}}(N_0 - X - Y - Z)}{\sum N}
$$

$$
P_{\text{CO}} = P_{\text{T}} \frac{Y}{\sum N} P_{\text{CO}_2} = P_{\text{T}} \frac{Z}{\sum N}
$$

$$
P_{\rm H_2O} = P_{\rm T} \frac{N_{\rm H_2O}}{\sum N}
$$

since

$$
P_{\rm T} = (a+1)(P_{\rm CH_4})_0.
$$

$$
\frac{X}{N_0} = \frac{(a+1)[(P_{\text{CH}_4})_0 - P_{\text{CH}_4}] - (a+3)[P_{\text{CO}} + P_{\text{CO}_2}]}{(a+1)(P_{\text{CH}_4})_0 + P_{\text{CH}_4} - P_{\text{CO}} - P_{\text{CO}_2}}
$$
\n
$$
\frac{Y}{N_0} = \frac{(a+2)P_{\text{CO}}}{(a+1)(P_{\text{CH}_4})_0 + P_{\text{CH}_4} - P_{\text{CO}} - P_{\text{CO}_2}}
$$

$$
\frac{Z}{N_0} = \frac{(a+2)P_{\text{CO}_2}}{(a+1)(P_{\text{CH}_4})_0 + P_{\text{CH}_4} - P_{\text{CO}} - P_{\text{CO}_2}}
$$

$$
\frac{N_{\rm H_2O}}{N_0} = \frac{(a+2)P_{\rm H_2O}}{(a+1)(P_{\rm CH_4})_0 + P_{\rm CH_4} - P_{\rm CO} P_{\rm CO_2}}.
$$

 P_{CH_4} , P_{CO} , P_{CO_2} , and $P_{\text{H}_2\text{O}}$ are proportional to the areas of Research, New York, 1984. the chromatographic peaks corresponding to, respectively,

CH₄, CO, CO₂, and H₂O, taking into account the molar

The molar

22. Ledoux, M. J., Pham Huu, C., Marin, S., Guille, J., and Weibel, M.

1. Pham Huu, C., Ma

This work was supported by a Stimulation Contract ST2J-0467-C(TT)
from the EEC.
26. Kaganer, M. G., Zhur. Fiz. Khim. 33, 2202 (1959).
26. Kaganer, M. G., Zhur. Fiz. Khim. 33, 2202 (1959).

-
-
-
-
- 1. Toth, L. E., "Transition Metal Carbides and Nitrides." Academic Blackie Glasgow/London, 1987; (b) Hansen, M., "Constitution of

Perss, New York, 1971.

29. Levy, R. B., and Boudart, M., Science 181, 547 (1973).

29. Ve
-
-
-
-
-
- Leclercq, L., Provost, M., Pastor, H., Grimblot, J., Hardy, A. M., 39. Grimblot, J., Payen, E., and Bonnelle, J. P., "Proceedings of the Gengembre, L., and Leclercq, G., J. Catal. 117, 371 (1989).
-
- 13. Volpe, L., and Boudart, M., *J. Solid State Chem.* **59,** 332 and 348 p. 261. University of Reading, England, 1982. (1985). 40. Rostrup-Neilsen, J. R., *J. Catal.* **31,** 173 (1973).
-
- 15. Leclercq, L., Imura, K., Yoshida, S., Barbee, T., and Boudart, M., *in Chim. France* 194 (1989).

''Preparation of Catalysts II'', (B. Delmon, P. Grange, and G. Poncelet, Eds.), p. 627 Elsevier, Amsterdam, 1978.

- 16. Lemaiˆtre, J., Vidick, B., and Delmon, B., *J. Catal.* **99,** 415 (1986).
- $D_0 + P_{\text{CH}_4} P_{\text{CO}} P_{\text{CO}_2}$ 17. Vidick, B., Lemaître, J., and Delmon, B., *J. Catal.* **99,** 428 (1986).
	- 18. Boudart, M., and Leclercq, L., U.S. Patent 4, 271, 041, 1981.
	- 19. Boudart, M., Oyama, S. T., and Leclercq, L., ''Proceedings 7th International Congress on Catalysis, Tokyo, 1980'' (T. Seiyama and K. Tanabe, Eds.), p. 578. Elsevier, Amsterdam, 1981.
	- 20. Laine, R. M., and Hirschon, A., *in* ''Better Ceramics Through Chemistry II'' (C. J. Brinker, D. E. Clark, and D. R. Ulrich, Eds.). Materials
	-
	- C. R. Acad. Sci. Ser. *II* 707 (1990).
- 23. Ledoux, M. J., Pham Huu, C., Guille, J., and Dunlop, H., *J. Catal.* **134,** 383 (1992).
ACKNOWLEDGMENTS 24. Mooney, W., Chiola, V., Hoffman, C. W. W., and Vanderpool, C. D.,
	-
	-
	-
	- 27. Delaunois, Y., Frennet, A., and Lienard, G., *J. Chim. Phys.* **63, REFERENCES** 28. (a) Tilley, R. D. J., "Defect Crystal Chemistry and its Applications,"
		-
		-
		-
		-
		-
		-
		-
		-
- *Lett.* **10**, 137 (1991). *Sci.* **47**, 149 (1991). *Sci.* **47**, 149 (1991). *Sci.* **47**, 149 (1991). *Sci.* **47**, 149 (1991). 37. Dianis, W. P., and Lester, J. E., *Anal. Chem.* **45**, 1416 (1973). **10**. Nakazawa, N., and O
	-
- 10. Nakazawa, N., and Okamoto, H., *Appl. Surf. Sci.* **24,** 75 (1985). 38. Blanchard, L., Grimblot, J., and Bonnelle, J. P., *J. Catal.* **98,** 229 (1986).
- Gengembre, L., and Leclercq, G., *J. Catal.* **117,** 371 (1989). Fourth Climax Molybdenum International Conference Sponsored
12. Boudart, M., Ovama, S. T., and Volpe, L., U.S. Patent 4, 515, 763, 1985. (Ann Arbor Michigan)" (Ann Arbor, Michigan)" (H. F. Barry and P. C. H. Mitchell, Eds.),
	-
- 14. Lee, J. S., Oyama, S. J., and Boudart, M., *J. Catal.* **106,** 125 (1987). 41. Vitidsant, T., Laguerie, C., Gilot, B., and Damronglerd, S., *Bull. Soc.*